Optical smoke alarm
The Technical Handbook – Domestic, published by Scottish Ministers to provide guidance on the building regulations suggests that there are 4 main types of fire detector used in dwellings:
- Optical smoke alarms.
- Ionisation smoke alarms.
- Multi sensor alarms.
- Heat alarms.
It is important that the right type of fire detector for different situations, as false alarms can result in the occupants disabling the fire detection and fire alarm system.
The most common causes of a false alarm are:
Optical smoke alarms detect the scattering or absorption of light within the detector chamber. They are more sensitive to slow smouldering fires such as fires involving soft furnishings and bedding.
A likely source of this type of fire is in a principal habitable room (a frequently used room by the occupants of a dwelling for general daytime living purposes) from the careless disposal of smoking materials. Polyurethane foam found in some furnishings may ignite and begin to smoulder producing large particles of smoke. Because of this, optical smoke alarms are recommended in principal habitable rooms. However if the room is used by a heavy smoker, this could give rise to some false alarms from tobacco smoke.
As optical smoke alarms are less sensitive from fumes caused by toasting bread or frying or grilling food, they are also recommended where a principal habitable room is open plan with a kitchen, and in hallways and stairwells adjacent to kitchens, to reduce the amount of unwanted alarms from cooking fumes. Most unwanted alarms occur during cooking.
Optical smoke alarms should conform to BS EN 14604: 2005 Smoke Alarm Devices.
Characterising smoke from modern materials and evaluating smoke detectors was written by Raman Chagger and published by BRE in 2014 states:
Optical smoke detectors typically use a smoke scatter chamber, which contains an LED source with a collimated lens that produces a beam. A photodiode is located at an angle to the beam. As smoke particles enter the chamber they interrupt the beam and the light is scattered and detected by the photodiode. This results in a voltage that can be used to determine an alarm condition. Optical detectors respond to smouldering fires very quickly, as the larger particles generated cause more scattering. Optical scatter chambers are less sensitive to small particles – and become progressively less sensitive as the smoke particle size approaches the LED wavelength used. Therefore optical smoke detectors are slower at detecting the small smoke particles generated from flaming fires. These detectors are less likely to produce false alarms from cooking fumes and steam than ionisation detectors. |
Ref: https://files.bregroup.com/research/Test-Fires-Characterisation_2014-November.pdf
[edit] Related articles on Designing Buildings Wiki
- Carbon monoxide detector.
- Characterising smoke from modern materials and evaluating smoke detectors.
- Domestic smoke alarms DG525.
- Fire detection and alarm system.
- Fire detector.
- Fire fatalities in Scotland.
- Heat alarm.
- Ionisation smoke alarm.
- Multi-sensor alarm.
- New requirements for fire detection and alarm network systems IP 12 13.
- Over £1 billion lost every year due to false alarms.
- Smoke detector.
- The causes of false fire alarms in buildings.
- The role of codes, standards and approvals in delivering fire safety.
Featured articles and news
How can digital twins boost profitability within construction?
A brief description of a smart construction dashboard, collecting as-built data, as a s site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure bill oulined
With reactions from IHBC and others on its potential impacts.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Architects Academy at an insulation manufacturing facility
Programme of technical engagement for aspiring designers.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.
The restoration of the novelist’s birthplace in Eastwood.
Life Critical Fire Safety External Wall System LCFS EWS
Breaking down what is meant by this now often used term.
PAC report on the Remediation of Dangerous Cladding
Recommendations on workforce, transparency, support, insurance, funding, fraud and mismanagement.
New towns, expanded settlements and housing delivery
Modular inquiry asks if new towns and expanded settlements are an effective means of delivering housing.
Building Engineering Business Survey Q1 2025
Survey shows growth remains flat as skill shortages and volatile pricing persist.